METODE SIMPLEKS



Penyelesaian Linear Program dengan Metode Simpleks

Contoh soal :

Selesaikan tabel simpleks berikut hingga mencapai nilai optimal!


Cj
80
100
0
0
0

Basis
X1
X2
S1
S2
S3
bj
S1
0
3
2
1
0
0
18
S2
0
2
4
0
1
0
20
S3
0
0
1
0
0
0
4
Zj






(Cj-Zj)








Penyelesaian :

Cj
80
100
0
0
0


Basis
X1
X2
S1
S2
S3
bj
Ratio
S1
0
3
2
1
0
0
18
18 : 2 = 9
S2
0
2
4
0
1
0
20
20 : 4 = 5
S3
0
0
1
0
0
0
4
4 : 1 = 4
Zj
0
0
0
0
0
0

(Cj-Zj)
80
100
0
0
0





Cj
80
100
0
0
0


Basis
X1
X2
S1
S2
S3
bj
Ratio
S1
0
3
0
1
0
0
10
10 : 3 = 3,33
S2
0
2
2
0
1
0
12
12 : 2 = 6
X2
0
0
1
0
0
0
4
4 : 0 =
Zj
0
100
0
0
0
400

(Cj-Zj)
80
0
0
0
0



Untuk S1 :
(1,1) = 3 - 2.0 = 3
(1,2) = 2 - 2.1 = 0
(1,3) = 1 - 2.0 = 1
(1,4) = 0 - 2.0 = 0
(1,5) = 0 - 2.0 = 0
(1,6) = 18 - 2.4 = 10

Untuk S2 :
(2,1) = 2 - 2.0 = 2
(2,2) = 4 - 2.1 = 2
(2,3) = 0 - 2.0 = 0
(2,4) = 1 - 2.0 = 1
(2,5) = 0 - 2.0 = 0
(2,6) = 20 - 2.4 = 12
Untuk X2 :
(3,1) = 0 : 1 = 0
(3,2) = 1 : 1 = 1
(3,3) = 0 : 1 = 0
(3,4) = 0 : 1 = 0
(3,5) = 0 : 1 = 0
(3,6) = 4 : 1 = 4


Cj
80
100
0
0
0

Basis
X1
X2
S1
S2
S3
bj
X1
80
1
0
0,33
0
0
3,33
S2
0
2
2
0
1
0
12
X2
100
0
1
0
0
0
4
Zj
80
100
26,4
0
0
666,7
(Cj-Zj)
0
0
-26,4
0
0


Untuk X1 :
(1,1) = 3 : 3 = 1
(1,2) = 0 : 3 = 0
(1,3) = 1 : 3 = 0,33
(1,4) = 0 : 3 = 0
(1,5) = 0 : 3 = 0
(1,6) = 10 : 3 = 3,33

Untuk S2 :
(2,1) = 2 - 0.1 = 2
(2,2) = 2 - 0.2 = 2
(2,3) = 0 - 0.0,33 = 0
(2,4) = 1 - 0.0 = 1
(2,5) = 0 - 0.0 = 0
(2,6) = 12 - 0.3,33 = 12
Untuk X2 :
(3,1) = 0 - 0.1 = 0
(3,2) = 1 - 0.0 = 1
(3,3) = 0 - 0.0,33 = 0
(3,4) = 0 - 0.0 = 0
(3,5) = 0 - 0.0 = 0
(3,6) = 4 - 0.3,33 = 0

Sudah dapat disebut optimal karena (Cj-Zj) pada X1 dan X2 bernilai 0. Nilai optimal yang didapat adalah 666,7.

Komentar

Postingan Populer