METODE SIMPLEKS
Penyelesaian Linear Program dengan Metode Simpleks
Contoh soal :
Selesaikan tabel simpleks berikut hingga mencapai
nilai optimal!
|
Cj
|
80
|
100
|
0
|
0
|
0
|
|
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
|
S1
|
0
|
3
|
2
|
1
|
0
|
0
|
18
|
S2
|
0
|
2
|
4
|
0
|
1
|
0
|
20
|
S3
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
Zj
|
|
|
|
|
|
|
|
(Cj-Zj)
|
|
|
|
|
|
|
Penyelesaian :
|
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
Ratio
|
|
S1
|
0
|
3
|
2
|
1
|
0
|
0
|
18
|
18 : 2 = 9
|
S2
|
0
|
2
|
4
|
0
|
1
|
0
|
20
|
20 : 4 = 5
|
S3
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
4 : 1 = 4
|
Zj
|
0
|
0
|
0
|
0
|
0
|
0
|
|
|
(Cj-Zj)
|
80
|
100
|
0
|
0
|
0
|
|
|
|
Cj
|
80
|
100
|
0
|
0
|
0
|
|
|
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
Ratio
|
|
S1
|
0
|
3
|
0
|
1
|
0
|
0
|
10
|
10 : 3 = 3,33
|
S2
|
0
|
2
|
2
|
0
|
1
|
0
|
12
|
12 : 2 = 6
|
X2
|
0
|
0
|
1
|
0
|
0
|
0
|
4
|
4 : 0 =
|
Zj
|
0
|
100
|
0
|
0
|
0
|
400
|
|
|
(Cj-Zj)
|
80
|
0
|
0
|
0
|
0
|
|
|
Untuk
S1 :
(1,1)
= 3 -
2.0 = 3
(1,2)
= 2 -
2.1 = 0
(1,3)
= 1 -
2.0 = 1
(1,4)
= 0 -
2.0 = 0
(1,5)
= 0 -
2.0 = 0
(1,6)
= 18 -
2.4 = 10
|
Untuk
S2 :
(2,1)
= 2 -
2.0 = 2
(2,2)
= 4 -
2.1 = 2
(2,3)
= 0 -
2.0 = 0
(2,4)
= 1 -
2.0 = 1
(2,5)
= 0 -
2.0 = 0
(2,6)
= 20 -
2.4 = 12
|
Untuk
X2 :
(3,1)
= 0 : 1 = 0
(3,2)
= 1 : 1 = 1
(3,3)
= 0 : 1 = 0
(3,4)
= 0 : 1 = 0
(3,5)
= 0 : 1 = 0
(3,6)
= 4 : 1 = 4
|
|
Cj
|
80
|
100
|
0
|
0
|
0
|
|
Basis
|
X1
|
X2
|
S1
|
S2
|
S3
|
bj
|
|
X1
|
80
|
1
|
0
|
0,33
|
0
|
0
|
3,33
|
S2
|
0
|
2
|
2
|
0
|
1
|
0
|
12
|
X2
|
100
|
0
|
1
|
0
|
0
|
0
|
4
|
Zj
|
80
|
100
|
26,4
|
0
|
0
|
666,7
|
|
(Cj-Zj)
|
0
|
0
|
-26,4
|
0
|
0
|
|
Untuk
X1 :
(1,1)
= 3 : 3 = 1
(1,2)
= 0 : 3 = 0
(1,3)
= 1 : 3 = 0,33
(1,4)
= 0 : 3 = 0
(1,5)
= 0 : 3 = 0
(1,6)
= 10 : 3 = 3,33
|
Untuk
S2 :
(2,1)
= 2 -
0.1 = 2
(2,2)
= 2 -
0.2 = 2
(2,3)
= 0 -
0.0,33 = 0
(2,4)
= 1 -
0.0 = 1
(2,5)
= 0 -
0.0 = 0
(2,6)
= 12 -
0.3,33 = 12
|
Untuk
X2 :
(3,1)
= 0 -
0.1 = 0
(3,2)
= 1 -
0.0 = 1
(3,3)
= 0 -
0.0,33 = 0
(3,4)
= 0 -
0.0 = 0
(3,5)
= 0 -
0.0 = 0
(3,6)
= 4 -
0.3,33 = 0
|
Sudah dapat disebut optimal karena (Cj-Zj)
pada X1 dan X2 bernilai 0. Nilai optimal yang didapat
adalah 666,7.
Komentar
Posting Komentar